

Minimal Boolean Algebra

©C.M.

Minimal BA

Truth table form of the lemma

©C.M.

Minimal BA

Definability

Full adder

n-Bits Binary Adder

Lemma

Assume $\mathbb B$ is a boolean algebra. Then the set of constants $\{0,1\}$ is closed under the operators + , \cdot and $\bar{}$. (i.e., $\{0,1\}$ is a boolean subalgebra of B.)

Proof.

- 1. $\stackrel{-}{\cdot}$: By the relevant neutralities of 0 and 1 we have 0+1=1 and $0\cdot 1=0$. Thus $\bar{0}=1$ and $\bar{1}=0$.
- 2. $\cdot :$ By the neutrality of 1 we get $1 \cdot 0 = 0 \cdot 1 = 0$ and $1 \cdot 1 = 1$. For $0 \cdot 0$ we work as follows. $0 \cdot 0 = 0 \cdot 0 + 0 = 0 \cdot 0 + (0 \cdot 1) = 0 \cdot (0 + 1) = 0 \cdot 1 = 0.$
- 3. +: By the neutrality of 0 we get 1+0=0+1=1 and 0+0=0. For 1+1 we work as follows.
 - $1+1 = (1+1)\cdot 1 = (1+1)\cdot (1+0) = 1+(1\cdot 0) = 1+0 = 1.$

0

1

0 1

Full adder

Definability

n-Bits Binary Adder

©C.M.

Minimal BA

Definable fun

Full adder

n-Bits Binary Adder

• If there is a boolean algebra then

ightharpoonup its 0 and 1 follow the above tables

y

0 0

0 0

0

0 1

1

1 1 $x \cdot y$

0

• No boolean algebra has been spotted as of yet!

The 2-Valued boolean algebra

Let us take the truth tables above as a definition.

x + y

0

1

1

y

0

0 0

0 1

1

1

Associativity of ·

x	y	z	$x \cdot y$	$(x \cdot y) \cdot z$	$y \cdot z$	$x \cdot (y \cdot z)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Boolean Algebras Associativity of +

\boldsymbol{x}	y	z	x+y	(x+y)+z	y + z	x + (y + z)
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

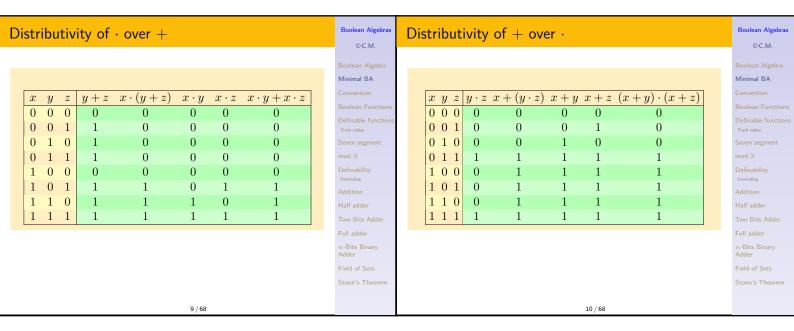
©C.M. Minimal BA Definable fun

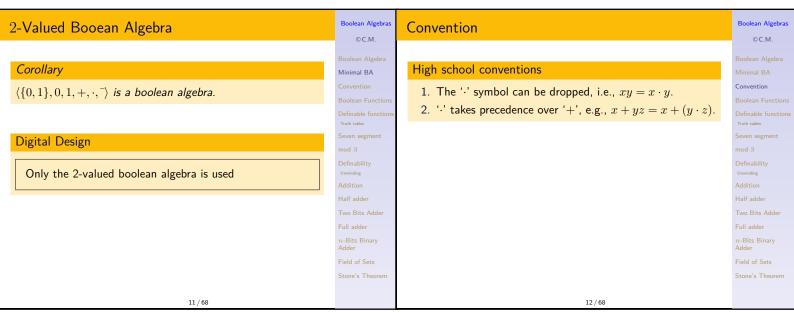
Boolean Algebras

Two Bits Adde Full adder n-Bits Binary Adder

8 / 68

7 / 68



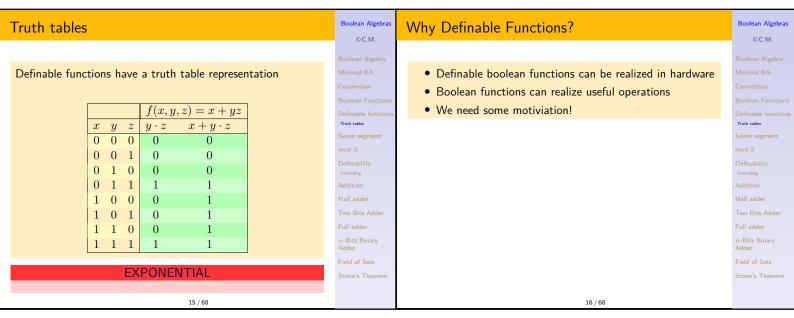


Boolean Algebra **Boolean Functions Definable Functions** ©C.M. ©C.M. Definition • There might be functions without a defining formula A function $f: \mathbb{B}^n \to \mathbb{B}^m$ is called a boolean function. ullet This is the situation with functions $\mathbb{R} o \mathbb{R}$ Definable functions Definition $1.~^-$ is a 1-ary function ullet A boolean function f is definable if it falls into one of the following cases: 2. Both \cdot and + are 2-ary functions Definability $ightharpoonup f=0 ext{ or } f=1 ext{ or } f=x_i.$ Definability $ightharpoonup f=(\bar{g})$, where g is a definable Exclusive-or, xor (⊕) $lackbox{} f = (f_0 + f_1)$ where both f_0 and f_1 are definable This is a function we all know and we use infix notation for it ▶ $f = (f_0 \cdot f_1)$ where both f_0 and f_1 are definable. • $f = g(h_0, \dots, h_{n-1})$ where g, h_0, \dots, h_{n-1} are definable Full adder Full adder $x \oplus y$ yn-Bits Binary Adder n-Bits Binary Adder 0 0 0 0 1 1 1 0 1

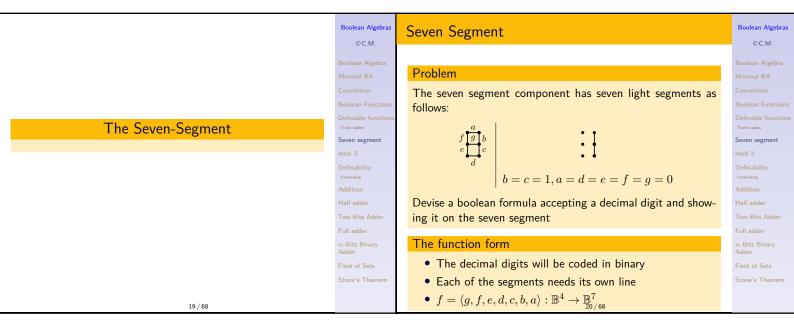
14 / 68

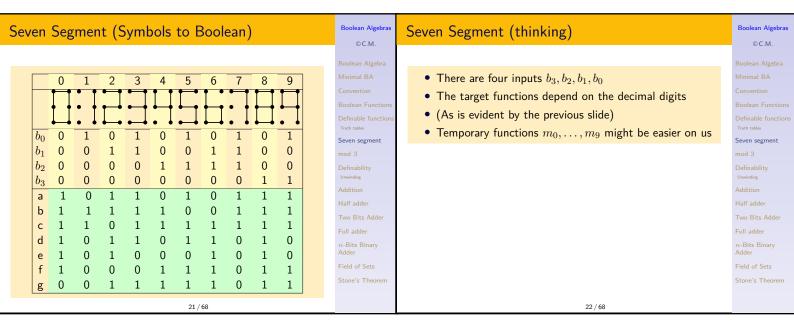
0

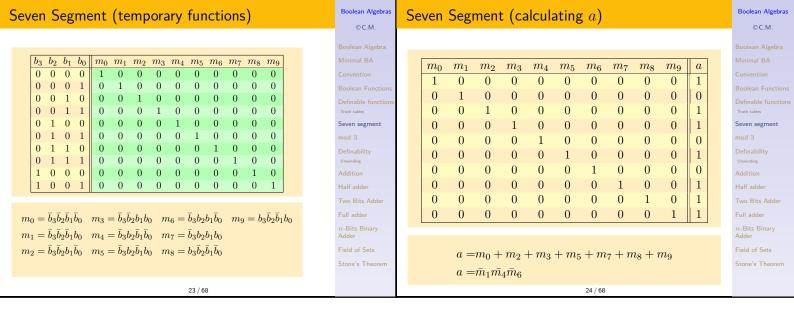
1 1



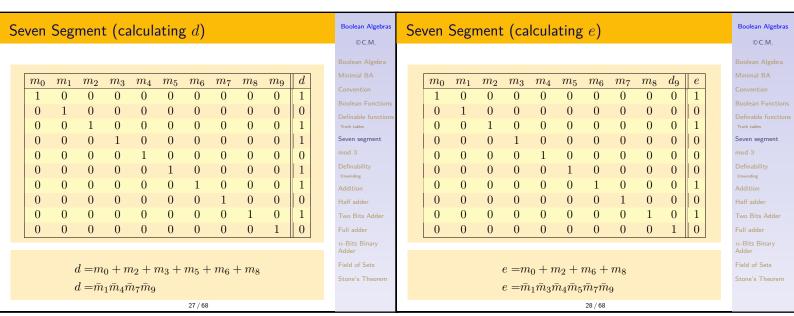
Boolean Algebra ©C.M. ©C.M. Motivation (Carmi) Lecture 4 reached here Truth tables Truth tables • Seven segment $\bullet \!\!\!\mod 3$ Definability Addition Definability Full adder Full adder n-Bits Binary Adder n-Bits Binary Adder Stone's Theorem 17 / 68 18 / 68







Boolean Algebra Seven Segment (calculating b) Seven Segment (calculating c) ©C.M. ©C.M. \overline{m}_0 \overline{m}_9 $\overline{m_1}$ $\overline{m_9}$ m_0 $\overline{m_6}$ m_8 m_2 m_3 m_4 m_5 m_6 m_7 m_8 m_1 m_2 m_3 m_4 m_7 m_5 Seven segment Seven segment Definability Definability Full adder Full adder n-Bits Binary Adder n-Bits Binary Adder $b = m_0 + m_1 + m_2 + m_3 + m_4 + m_7 + m_8 + m_9$ $c = m_0 + m_1 + m_3 + m_4 + m_5 + m_6 + m_7 + m_8 + m_9$ $b = \bar{m}_5 \bar{m}_6$ $c = \bar{m}_2$ 25 / 68 26 / 68



Seven Segment (calculating f)	Boolean Algebras	Seven Segment (calculating g)	Boolean Algebras
	© C.M. Boolean Algebra Minimal BA Convention Boolean Functions Definable functions Truth tables Seven segment mod 3 Definability Unvinding Addition Half adder Two Bits Adder Full adder n-Bits Binary Adder Field of Sets Stone's Theorem		© C.M. Boolean Algebra Minimal BA Convention Boolean Functions Definable functions Truth tables Seven segment mod 3 Definability Unwinding Addition Half adder Two Bits Adder Full adder n-Bits Binary Adder Field of Sets Stone's Theorem
$f = \bar{m}_1 \bar{m}_2 \bar{m}_3 \bar{m}_7$		$g=ar{m}_0ar{m}_1ar{m}_7$	

A mod 3 function mod 3 (truth table) ©C.M. ©C.M. Problem Decimal Binary $n \mid n \mod 3$ n_1 n_0 Devise a boolean formula for computing $n \mod 3$ for $0 \le n \le$ 0 0 0 0 0 0 2 0 0 0 0 3 0 0 0 1 0 The function form 0 0 0 • We use binary coding mod 3 mod 3 0 0 0 0 Definability Definability • 4-bits input • 2-bits output 0 0 0 0 0 10 0 0 0 • Thus the function is of the form $f = \langle f_1, f_0 \rangle : \mathbb{B}^4 \to \mathbb{B}^2$ 11 0 1 0 0 0 12 0 Full adder Full adder 13 0 1 0 1 n-Bits Binary Adder 0 n-Bits Binary Adder 0 15 How do we get formulae from this? Stone's Theorer

34 / 68

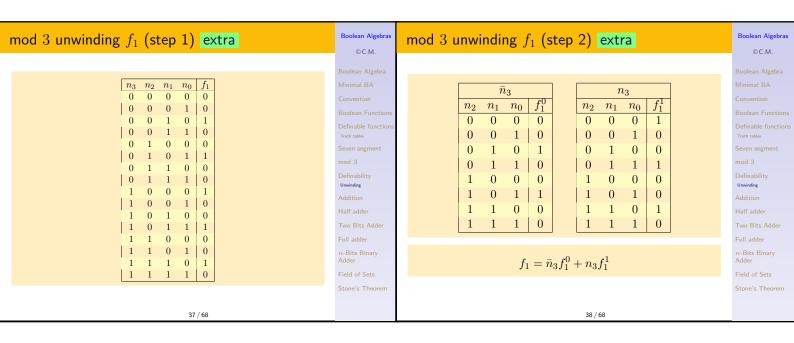
36 / 68

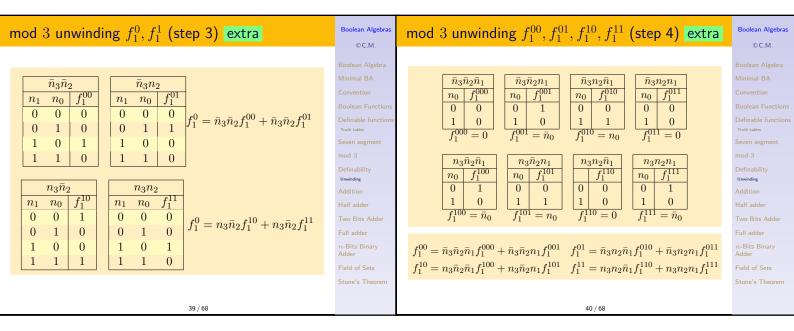
33 / 68

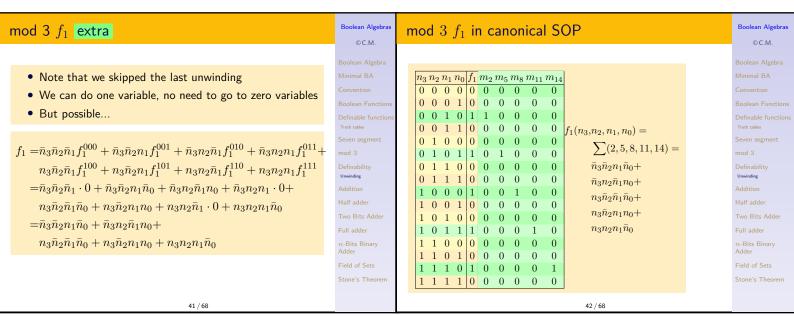
35 / 68

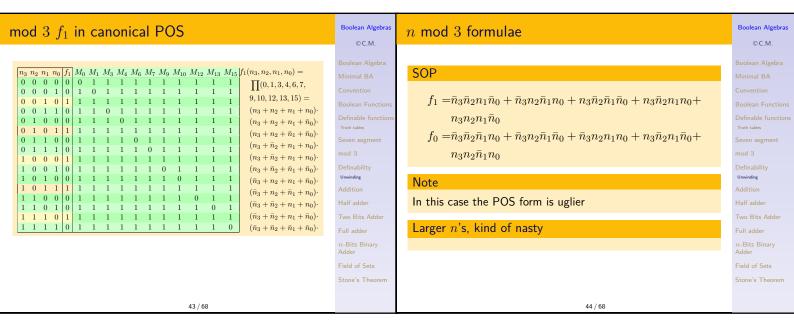
is definable.

Boolean Algebras Boolean Algebras Proof of definability (POS form) extra Definability of Boolean Functions (SOP form) ©C.M. ©C.M. extra Proof. \mathbb{B}^{n+1} **Theorem** Let f: \mathbb{B} be a function. Let $f_0(x_{n-1},...,x_0)$ $f(0,x_{n-1},\ldots,x_0)$ The boolean functions are definable. Definable fund $f_1(x_{n-1},\ldots,x_0) = f(1,x_{n-1},\ldots,x_0).$ By induction Proof. the functions f_0 and f_1 are definable, hence the func-It is enough to show that the functions $f:\mathbb{B}^n \to \mathbb{B}$ are tion $f(x_n,...,x_0) = (x_n + f_0(x_{n-1},...,x_0)) \cdot (\bar{x}_n +$ Definability Definability definable. We do this by induction. $f_1(x_{n-1},\ldots,x_0))$ is definable. $\underline{n} = 0$: A 0-ary function is a constant, that is either 0 or 1. Thus definability is immediate. $\underline{n+1}$: Let f: \mathbb{B}^{n+1} \mathbb{B} be a function. Two Bits Adde Two Bits Add Let $f_0(x_{n-1},...,x_0)$ $f(0,x_{n-1},\ldots,x_0)$ Full adder $f_1(x_{n-1},...,x_0) = f(1,x_{n-1},...,x_0)$. By induction n-Bits Binary Adder n-Bits Binary Adder the functions f_0 and f_1 are definable, hence the function $f(x_n, \dots, x_0) = \bar{x}_n \cdot f_0(x_{n-1}, \dots, x_0) + x_n \cdot f_1(x_{n-1}, \dots, x_0)$

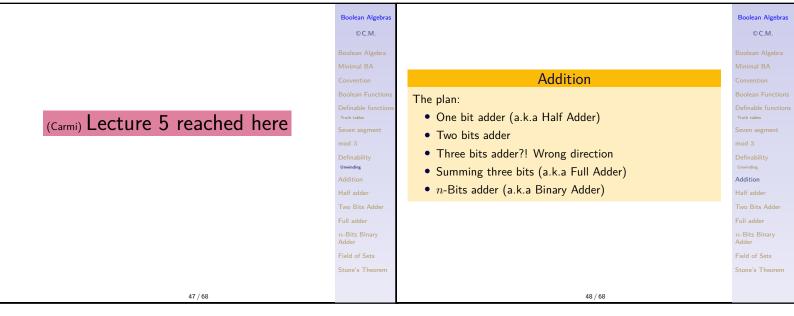








Boolean Algebra mod 3 (notes) ©C.M. ©C.M. • There is an algorithm for mod • We used it to **build** the truth table • We did **not** implement the algorithm Truth tables do not scale up!!!! • Truth table implementation is mechanical However, they might give us more optimized functions ullet However, it is not practical for large n's • Usually it is also fast (relevant when we have hardware) Definability Definability • Algorithm implementation is usually harder Full adder Full adder n-Bits Binary Adder n-Bits Binary Adder 45 / 68 46 / 68



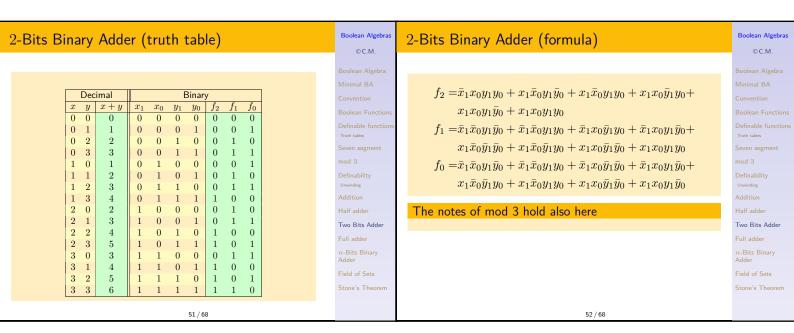
Boolean Algebra One Bit Adder Two Bits Adder ©C.M. ©C.M. Problem Problem Devise a formula to add two one-bit numbers Devise a formula to calculate the sum of two numbers each in the range 0-3• 2-bits inputs: Maximal possible sum is 2. The function form • Hence $f = \langle f_1, f_0 \rangle : \mathbb{B}^2 \to \mathbb{B}^2$ • Of course we use binary coding Definability Definability • Each of the inputs is 2-bits wide Decimal Binary • Thus sum is 6 at most f_0 f_1 0 0 0 0 0 Half adder • Thus the output is 3-bits wide Two Bits Adder 0 1 0 1 1 • The function is of the form $f = \langle f_2, f_1, f_0 \rangle : \mathbb{B}^4 \to \mathbb{B}^3$ Full adder Full adder 1 0 1 0 1 n-Bits Binary Adder n-Bits Binary Adder 1 0

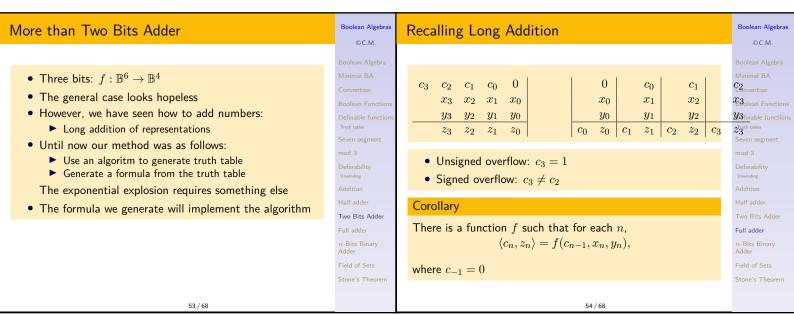
50 / 68

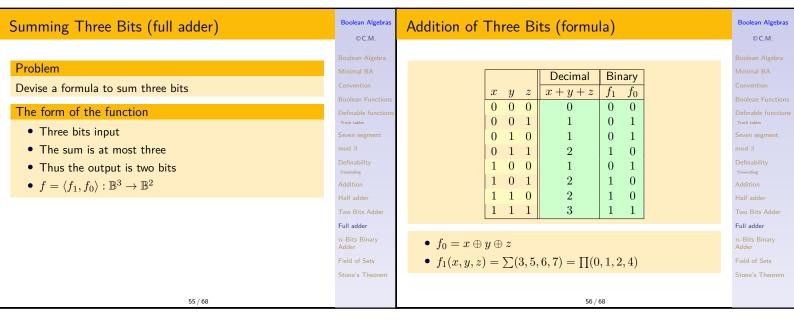
 $f_1 = xy$

 $f_0 = x \oplus y$

49 / 68







Simplifying the SOP version

$$f_1 = \bar{x}yz + x\bar{y}z + xy\bar{z} + xyz =$$

$$= (\bar{x} + x)yz + (\bar{y} + y)xz + xy(\bar{z} + z) =$$

$$= yz + xz + xy$$

57 / 68

Boolean Algeb

©C.M.

Boolean Algebra
Minimal BA
Convention
Boolean Functions
Definable functions
Truth tables
Seven segment

mod 3
Definability
Unwinding

Half adder
Two Bits Add

Full adder $n ext{-Bits Binary Adder}$

Stolle's 1

Binary Adder without Truth Tables

Well, almost, we use the full adder

58 / 68

n-Bits Binary Adder

Problem

For each n devise a function to compute the sum of two numbers each in the range $0 - 2^n - 1\,$

Function Form

- Of course, binary
- ullet Each of the input numbers is n-bits wide
- $\bullet \ \ {\rm The \ output \ is} \ n+1{\rm -bits \ wide}$
- ullet The form is $f=\langle f_n,\cdots,f_0
 angle:\mathbb{B}^{2n} o\mathbb{B}^{n+1}$

Definitions

Boolean Algebras

©C.M.

Definable fu

Two Bits Add

n-Bits Binary Adder

Full adder

• Let $x_{n-1} \cdots x_0$ and $y_{n-1} \cdots y_0$ be the binary representation of the two input numbers

n-Bits Binary Adder (Algorithm)

- ullet Let $z_n\cdots z_0$ be the binary representation of the sum
- Let $f = \langle f_1, f_0 \rangle : \mathbb{B}^3 \to \mathbb{B}^2$ be the full adder

 $\langle c_0, z_0 \rangle = \langle f_1(x_0, y_0, 0), f_0(x_0, y_0, 0) \rangle$

Long addition

$$\begin{split} \langle c_1, z_1 \rangle = & \langle f_1(x_1, y_1, c_0), f_0(x_1, y_1, c_0) \rangle \\ \vdots = & \vdots \\ \langle c_{n-1}, z_{n-1} \rangle = & \langle f_1(x_{n-1}, y_{n-1}, c_{n-2}), f_0(x_{n-1}, y_{n-1}, c_{n-2}) \rangle \\ z_n = & c_{n-1} \end{split}$$

60 / 68

© C.M.

Minimal BA
Convention
Boolean Functions
Definable functions
Truth tables
Seven segment
mod 3
Definability

Addition
Half adder
Two Bits Adder
Full adder
n-Bits Binary
Adder

Field of Sets Stone's Theore

Boolean Algebras

Boolean Algebra
Minimal BA
Convention
Boolean Functions
Definable function
Truth tables
Seven segment

Truth tables
Seven segment
mod 3
Definability
Unwinding

Addition
Half adder
Two Bits Adder
Full adder

Full adder

n-Bits Binary
Adder

Field of Sets Stone's Theorem

59 / 68

